extension | φ:Q→Aut N | d | ρ | Label | ID |
C22.1(C4×A4) = C4×C42⋊C3 | φ: C4×A4/C22×C4 → C3 ⊆ Aut C22 | 12 | 3 | C2^2.1(C4xA4) | 192,188 |
C22.2(C4×A4) = C24⋊C12 | φ: C4×A4/C22×C4 → C3 ⊆ Aut C22 | 12 | 6+ | C2^2.2(C4xA4) | 192,191 |
C22.3(C4×A4) = C42⋊C12 | φ: C4×A4/C22×C4 → C3 ⊆ Aut C22 | 24 | 6 | C2^2.3(C4xA4) | 192,192 |
C22.4(C4×A4) = C42⋊2C12 | φ: C4×A4/C22×C4 → C3 ⊆ Aut C22 | 24 | 6- | C2^2.4(C4xA4) | 192,193 |
C22.5(C4×A4) = (C2×Q8)⋊C12 | φ: C4×A4/C2×A4 → C2 ⊆ Aut C22 | 32 | | C2^2.5(C4xA4) | 192,998 |
C22.6(C4×A4) = A4×M4(2) | φ: C4×A4/C2×A4 → C2 ⊆ Aut C22 | 24 | 6 | C2^2.6(C4xA4) | 192,1011 |
C22.7(C4×A4) = M4(2).A4 | φ: C4×A4/C2×A4 → C2 ⊆ Aut C22 | 32 | 4 | C2^2.7(C4xA4) | 192,1013 |
C22.8(C4×A4) = C8×SL2(𝔽3) | central extension (φ=1) | 64 | | C2^2.8(C4xA4) | 192,200 |
C22.9(C4×A4) = C2×C4×SL2(𝔽3) | central extension (φ=1) | 64 | | C2^2.9(C4xA4) | 192,996 |
C22.10(C4×A4) = A4×C2×C8 | central extension (φ=1) | 48 | | C2^2.10(C4xA4) | 192,1010 |
C22.11(C4×A4) = C2×C8.A4 | central extension (φ=1) | 64 | | C2^2.11(C4xA4) | 192,1012 |