Extensions 1→N→G→Q→1 with N=C22 and Q=C4×A4

Direct product G=N×Q with N=C22 and Q=C4×A4
dρLabelID
A4×C22×C448A4xC2^2xC4192,1496

Semidirect products G=N:Q with N=C22 and Q=C4×A4
extensionφ:Q→Aut NdρLabelID
C22⋊(C4×A4) = C4×C22⋊A4φ: C4×A4/C22×C4C3 ⊆ Aut C2224C2^2:(C4xA4)192,1505
C222(C4×A4) = A4×C22⋊C4φ: C4×A4/C2×A4C2 ⊆ Aut C2224C2^2:2(C4xA4)192,994

Non-split extensions G=N.Q with N=C22 and Q=C4×A4
extensionφ:Q→Aut NdρLabelID
C22.1(C4×A4) = C4×C42⋊C3φ: C4×A4/C22×C4C3 ⊆ Aut C22123C2^2.1(C4xA4)192,188
C22.2(C4×A4) = C24⋊C12φ: C4×A4/C22×C4C3 ⊆ Aut C22126+C2^2.2(C4xA4)192,191
C22.3(C4×A4) = C42⋊C12φ: C4×A4/C22×C4C3 ⊆ Aut C22246C2^2.3(C4xA4)192,192
C22.4(C4×A4) = C422C12φ: C4×A4/C22×C4C3 ⊆ Aut C22246-C2^2.4(C4xA4)192,193
C22.5(C4×A4) = (C2×Q8)⋊C12φ: C4×A4/C2×A4C2 ⊆ Aut C2232C2^2.5(C4xA4)192,998
C22.6(C4×A4) = A4×M4(2)φ: C4×A4/C2×A4C2 ⊆ Aut C22246C2^2.6(C4xA4)192,1011
C22.7(C4×A4) = M4(2).A4φ: C4×A4/C2×A4C2 ⊆ Aut C22324C2^2.7(C4xA4)192,1013
C22.8(C4×A4) = C8×SL2(𝔽3)central extension (φ=1)64C2^2.8(C4xA4)192,200
C22.9(C4×A4) = C2×C4×SL2(𝔽3)central extension (φ=1)64C2^2.9(C4xA4)192,996
C22.10(C4×A4) = A4×C2×C8central extension (φ=1)48C2^2.10(C4xA4)192,1010
C22.11(C4×A4) = C2×C8.A4central extension (φ=1)64C2^2.11(C4xA4)192,1012

׿
×
𝔽